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PHASE TRANSITION KINETICS IN THE PRESENCE OF JOULEAN DISSIPATION 

A. S. Pleshanov UDC 537.528;537.529 

A phase transition in the presence of volume heat liberation occurs in electrical break- 
down of condensed media, in electrical explosion of conductors, and in various commutation 
processes. It was noted in [i, 2] that under conditions of volume heat liberation the phase 
transition includes a region of phase coexistence. However to the best of the author's know- 
ledge the effect of volume heat liberation on the kinetics of the phase transition have yet 
to be studied. The present study will offer a theoretical analysis of this effect. 

Let an electrical current of density j pass through a layer of condensed material. Due 
to Joulean dissipation the temperature T of the layer increases. The nonsteady-state T dis- 
tribution can be found from the one-dimensional thermal conductivity equation 

where w = w ~ + cT is the enthalpy (w ~ is the reference level for measurement of w, c is the 
heat capacity); 0 is the density; • is the thermal conductivity coefficient; o is the elec- 
trical conductivity; x is the coordinate across the layer; the subscript denotes differentia- 
tion. The initial condition at time t = 0 has the form 

T(x ,  O) = To, ( 2 )  

while the boundary condition corresponding to Newtonian heat exchange with the external med- 
ium at T = T o is 

[• x + ~(T  - -  T0)][~ = 0 ( 3 )  

( w h e r e  ~ i s  t h e  h e a t  e x c h a n g e  c o e f f i c i e n t  and  d i s  t h e  l a y e r  h a l f - w i d t h ) .  When Tma x r e a c h e s  
the phase transition temperature T, a new phase appears, the process of heat propagation within 
which is described by an equation analogous to Eq. (i). On the phase boundary the conditions 
of continuity of j, and the mass and energy fluxes are satisfied, as well as continuity of 
the potential ~ and T: 

{j} = {~v} = {pvw - -  •  = O, {~} = {r}  = O. ( 4 )  

Here v is the velocity relative to the seam and {f} = f2 - fl (the subscripts ~ = i, 2 refer 
to the initial and new phases respectively). Sample ~ and T distributions under conditions 
of identical heat exchange at both boundaries are shown in Fig. i. 

In fact, when Tma x reaches the value T, under the conditions of the given problem, where 
heat is conducted to the layer volumewise and at a finite rate, a finite time is required for 
transition of phase 1 into phase 2. There follows from Eq. (i) an expression describing this 
nonsteady-state process at T I = T 2 = T,: 

p w , ~  = flW,, (5) 

7 w h e r e  w,  = ~ . ~ w ~ , x ~ = w l , + ( w 2 , _ w l , ) x 2 - - _ _ w l , + A w ,  x ~ ; o , = ~ ] o u , x  ~ = o l ,  + ( 0 2 ,  o l , ) x 2  ~ o l ,  + 

Ao,x2; x a is the volume concentration of the phase ~, coinciding in view of the equality 
of the molecular weights of both phases with its mass fraction (it is assumed that o~ is pro- 
portional to the volume density of charge carriers n); the subscript * indicates T = T,. Here 
we use an additive expression for the conductivity of the mixture, which gives a minimum value 
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for its resistance. The maximum resistance is obtained when an additive expression is used 
for the resistivities. The value of the actual resistance will lie between these limiting 
values. The integral of Eq. (5) for j = const has the form 

~,~,,,. ( ~ , . ~  ~ ~ .  (1:2)~) =/~ i t -  o~ (6) 

(8 is an integration constant corresponding to the moment of appearance of phase 2 (x= = 0)); 
~i = (t - O)ma X is obtained from the condition of disappearance of phase i (x 2 = I); t o = 8mi n 
corresponds to the moment when the condition TI(0, to) = T, is first achieved. At the time 
t I = t o + T I in the center of the layer phase I disappears completely, after which there de- 
parts from the center a front of abrupt transformation of phase i into phase 2 with decreasing 
value of the concentration x2, on this front in the direction of the region of phase coexis- 
tence; x2, can be found from Eq. (6) when the half-width of phase 2, equal to s is equal 
to the coordinate of the leading edge of the phase coexistence region at time O, equal to 
s Moreover, using the symmetry boundary condition and the condition 

T~,~(0, l) = 0 ,  T~]t~ = T<,~ (.r=7'2.x + ?Au',x~,l~,O]z= = 0 .  (7) 

As r e g a r d s  d e t e r m i n a t i o n  of  s  t h e  l a t t e r  can be found  from t h e  t e m p e r a t u r e  f i e l d  in  
phase  1 f o r  bounda ry  c o n d i t i o n s  (3) and 

f,l~,~ = T,. T~,~lt,~ =o.  (8) 

The last condition of Eq. (8)is a consequence of the absence of a gradient in the phase co- 
existence region. The rear edge of the phase coexistence region, defined by ~2(t), overtakes 
the leading edge until finally the phase coexistence region disappears, after which the pat- 
tern of T distribution will coincide with Fig. lb. Thus, between the stage of layer heating 
until the temperature Tl(0, t) reaches the value T, (stage 0) and the stage of nonsteady-state 
transition from phase i to phase 2 (stage 3) there exist a stage of formation of a phase co- 
existence region from the center of the layer to its periphery (stage i) and a stage of simul- 
taneous presence of phases i and 2, separated by an intermediate phase coexistence region 
(stage 2). A qualitative x--t diagram with x 2 references is shown in Fig. 2, while sample 
T distributions for various stages are shown in Fig. 3. 

A mathematical description of the given nonsteady-state process with nonlinear boundary 
conditions at unknown phase boundaries s and s is quite complex even for the model 
situation of constancy of o~(o 1 ~ 0 2 ) and Pl  = P2, which will be assumed below. A simple, 
and as will be shown below, sufficiently accurate method of study is that of integral balan- 
ces, in which Eq. (i) is satisfied in integral form 

d d 

y ~)IUII~;dj~ = ~lT:l,xlf12 _jr - i9, J~ d..~z. ( 9 )  
' , ( 7 1  

112 112 

l 2 12 

(~2 r 
0 0 

while the T~ profiles are taken parabolic in x 

T~ ~ a~ + b~x -~ %(t/2)x 2 (11) 

with coefficients dependent on t and determined from the boundary conditions. It can easily 
be proved that the system (9), (i0) together with all the boundary conditions is closed rela- 
tive to the six coefficients of Eq. (ii) and the two laws of motion for s and s Use of 
a power approximation in Eq. (Ii) is justifiable from the fact that a solution in the form 
of Eq. (ii) for constant coefficients pc, • ,and j2/o is a particular exact solution of Eq. 
(i), asymptotically valid as t + ~. 

We will demonstrate the accuracy of the integral balance method using the self-similar 
problem which has an exact solution. Upon a layer of material at T = T, let there act an 
electrical voltage U = const, which falls only across the newly appearing new phase. Equation 
(i) has the form 

~/ u \~ (12) 
pwt = (• + -6- -7----- 

626 



? < 

-d 

O x 
1 d 

Fig. 

\ 
- d r  2 f d  

o d 

T 

x 

o d 

Fig. 2 Fig. 3 

(where s is the width of the new phase). The temperature T satisfies the boundary conditions 

Tx(O,t ) = 0 ,  T I z=T , ,  (• lt)[~=O. (13) 

We will seek a solution__ of Eq. (12) in the form T = T, + (T m - T,)f(~), where T m = T(0, t) = 
const; $ = x/(2Jxt) being the self-similar variable. Obviously f(0) = 1 and f(q) = 0 (D = 
s For pc, • = const 

I I l r  \ 
/~ + 2~/~ + z~ (T m -  T,) [ ~---c'--'--~ ~ = O, 

while for o = const we have the exact solution 

/ = ]/'(• (T m -  T,) exp ( - -  exp (~,,2) d$" dg ,  

which at ~ = 0 relates T m and D; q is found according to Eq. (13) from 

( w h e r e  D (~l) = exp (--  ~l ~) S exp (~) d~ 
o 

ance method gives the relationship 

=~_~_ U 
-5N7 V2 <~/~)(A~.-/ci 

is a Dawson integral [3]). 

(14) 

For this case the integral bal- 

D = q F i -? (2/3)qh (15) 

Figure 4 shows the exact ql and approximate q2 solutions as functions of the parameter 
U. The solutions begin to diverge at q ~ l, with the integral balance method giving the larger 
q value, i.e., more intense motion of the phase transition boundary. The reason for the good 
approximation can be demonstrated by power expansions of Eqs. (14), (15) 

=~(i + O/3)q ~ + O/30)~*-- ...), 

= ~ ( i  + (ll3)q ~ - -  (lt18)q* + . . . ) .  
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We note that solution (15) is a particular solution of the corresponding nonlinear differen- 
tial equation; the general solution of this equation does not satisfy the initial condition 
for arbitrary finite problem parameter values. 

The accuracy of the integral balance method can also be tested by study of the layer heat- 
ing state (stage 0) with the same assumption of constancy of all coefficients. The exact sol- 
ution of Eq. (i) for the conditions T1(x, 0) = T o , T1,xl 0 = 0, [• ~(T~ - T0)]l~ = 0, 
obtained in analogy to [4], has the form 

T 1 - -  To = 9 (]d)~ ~ ' ~  sinknd . ' x " ( • 1 7 6  =-- (16) 

__ (•176 -~a+  .-~- 1 - - ~ -  --2n~__l(~--~exp(--Z~%lt) c~ 

Here t h e  e i g e n v a l u e s  Xn s a t i s f y  t h e  c h a r a c t e r i s t i c  e q u a t i o n s  hnd t a n  ~n d = Nd; X1 = (• i s  
t h e  t h e r m a l  d i f f u s i v i t y ;  N d = ~zd/x, i s  t h e  N u s s e l t  number; t h e  t e rm in  squa re  b r a c k e t s  i s  
t h e  s t e a d y - s t a t e  s o l u t i o n  of  Eq. (1) as  t + ~, i f  Tma x < T , .  We w r i t e  t h e  s o l u t i o n  of  Eq. (1) 
bound by t h e  i n t e g r a l  b a l a n c e  method in  t h e  form 

T I _ _ T o =  (]d) ~ t i (17) 
+ - r  1 (1 - ( -  

(~t = (1/3 + i/Nd)d2/x1 is the thermal time). 

Comparison of Eqs. (16) and (17) leads to the conclusion that the integral balance meth- 
od is equivalent to the approximation of a regular regime where the first exponential in the 
series of Eq. (16) is considered. The moment when TI(0 , t) reaches T, can be obtained from 
Eq. (17) in the form 

t o ----- % = -- ~t In [1 -- (],/])~-I (18)  

1 

] * -  V t + Z / N  d 
equation at t = t o has the form 

d 
d .I _ Tl,t I,o dx  = ~ -  (j~ --  j2,) > 0. ( 19 ) G,, I,o (pch 

0 

The f o l l o w i n g  s t a g e  o f  f o r m a t i o n  of  a phase  c o e x i s t e n c e  r e g i o n  ( s t a g e  1) i s  d e s c r i b e d  
by t h e  s o l u t i o n  of  Eq. ( 6 ) ,  whence f o l l o w s  t h e  d u r a t i o n  of  t h i s  s t a g e  

paw, t 
t l  - -  t ~  = ]~ 2 ((~1 -~ O'2)" ( 2 0 )  

The c o o r d i n a t e  o f  t h e  l e a d i n g  edge of  t h e  phase  c o e x i s t e n c e  r e g i o n  s can be found by t h e  

T 1 - -  T O l ( ~ - -  I~2 / ~ 
integral balance method using the representation T,--T o --i- i-~2/N1 \ /i i , which satis- 

fies boundary conditions (3) and (8). Here s is the width of phase I (s + s = d); N I = 

N 1 (N 1 -~- 4) 3 )~1 
Nl_t_2 N~.t= l /2+l /Na d ~ [ ( ] / ] * ) ~ N I ( N I + 2 ) - - N d ( N d + 2 ) ]  (21) 

i ]/2 (• (T, -- To) < j is the current scale), while the integral thermal balance 
d 

with initial condition N1(t 0) = N d. In analogy to Eq. (19) 

N d (N d + 4) ] 3 X 1 
�9 N a~-2 N 1 3  = t / 2 + 1 / N  a d ~ Ne(Na+2)[(] /] , )  ~ - t ] < 0 .  

t 0 

The i n t e g r a l  o f  Eq. (21)  has  t h e  form 

3 
N1-- N14 3 ~1 ( ] ) 2 

~ a ~ l n  Na Nii + i/2".q_l/N a d": f" 7 ,  ( / - - t n ) = 0 ~  
(22)  
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where Nzi are the corresponding roots; a i are quantities determined by the undefined coeffi- 
cient method. For the special case N d >> 1 we obtain the simple integral 

r"(;/J,)2 (q/d)~ _ ~ ] ( •  2 ~ :  �9 ( 2 3 )  ln [  : i ~ :  J + t 2 ~ , i * /  d ~ (t to)=O, 

whence it follows that ~:min/d = j,/j < l. Analogously in the general case of Eq. (22) N: 
decreases from the value N d to N:min = /i + (j,/j)2 Nd (N d + 2) - 1 < N d. Thus the phase 
coexistence region does not extend beyond the layer boundary. 

At the time t = t: a front of discontinuous transition into phase 2 begins to propagate 
from the layer center. The value of the phase 2 concentration on this front xi,. in the direc- 
tion of the phase coexistence region can be obtained by eliminating O from Eq. ~6) and (22) 
or (23) (where we take t = e) with the condition ~1 = d - ~2. For example, with use of Eq. 
(23)  

. ~:~2,+A~:x2,)+:~5- ~ -7::, u/j :F~/~  ~ l 

( t  1 <_ t 5_ t 2 ) ,  t h e  e x t e n t  o f  s t a g e  2 can be found  f rom t h e  c o n d i t i o n  x 2 ,  = 0 and i s  e q u a l  t o  

i (]*X2 d2 [ (i/i*) 2 - j [  ] 
t~ - q ---- ~2 = 7 :  k-7-/ ~ In . . . . .  ~:. ( 25 ) (j/j,)z (/t./d) 2 -- l 

q2* /-2 2\ Commencing from the representation T 2 --T. = ~ t t i - - x  ] ,  which satisfies boundary condition 

(7) (qi, = pAw,xz,~2,t), we obtain the integral thermal balance equation 

i_j_(q2,1~) t + q=, 7.~_~ ! (26) 
3Z2 = ~2 2, 

from which, in view of the definition of q 2 ,  with use of Eq. (24), we can find ~2" For small 
t - t I the velocity 

12,t ---- 12 -7- --  t > O, 

which proves constant and significantly higher than the thermal velocity x:/d. 

The final stage 3 is described by Eq. (26) for phase 2 and an analogous equation for 
phase i, which follows from the overall thermal balance 

d .2 7 

12 
l: (28)  

and Eq. (11)  

1 [ ( lq_  t ]{ x--12~2 
T: = T ,  - -  ql.___~,~: .(x - -  ~2) - -  ~ 4 2 / N  i (T,  - -  To) - -  ~ )  - ~ h  q~* ~--7-(--~ ) , 

which satisfies boundary condition (3) and 

T: I~2 = T,, -- • I12 = q:*. 

( 2 9 )  

( 3 0 )  
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The thermal fluxes introduced q~, satisfy the boundary condition 

q2*--ql* = pAw,12.t. (31) 

The system of  Eqs. (26) ,  (28) and (31) i s  c losed  wi th  r e s p e c t  to  q~, and ~2- 

Stage 3 is completed by exit of the phase transtiion boundary to the layer boundary (at 
time t = t3), after which the process is described by a single Eq. (i) for the entire phase 
2 layer until the onset of any following phase transition. Incidentally, second and subse- 
quent phase transitions are possible before the first is completed. 

The author thanks Yu. N. Vershinin for his discussion. 
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ROTATIONAL RELAXATION TIME OF NITROGEN 

A. E. Belikov, I. Yu. Solov'ev, 
G. I. Sukhinin, and R. G. Sharafutdinov 

UDC 533.6.011.8 

Rotational relaxation can be described theoretically with the help of the Wang-Chang- 
Uhlenbeck equations for the one-particle distribution function /j(v,r,t) [i], where j is the 
rotational quantum number, v is the velocity, r is the position, and t is the time. When 
the charcteristic rotational relaxation time is much larger than the time to establish an 
equilibrium distribution of the translational energies of the molecules, the distribution 
function fj can be written in the form of a product fj = f(r,v,t)Nj(r, 0. In this case relaxa- 
tion of Nj(r,t) occurs for the equilibrium translational energy distribution and is described 
by the system of kinetic equations of [2]. Reliable information on the rate constants of the 
rotational transitions is not available at the present time, and this makes analysis of the 
rotational kinetics on the basis of these equations difficult. 

A less detailed description can be obtained by using the relaxation equation 

dEa / dt = --(ER-- E~)~R, (I) 

which is only valid when the deviation from equilibrium is small (E R and E t are the actual and 
equilibrium values of the rotational energy and ~R is the rotational relaxation time). 

The rotational relaxation time has been determined from various types of experiments 
(ultrasound, shock waves, thermal transpiration, and so on), including measurements of the 
parameters in a free jet [3]. It is usually assumed in analyzing the experimental results 
that (i) is valid over the entire flow field, although in free jets significant deviations 
from equilibrium can be reached, which makes the validity of this equation doubtful over the 
entire region of the parameters. A second deficiency of the analysis of existing experimental 
data is that the characteristic collision number Z R = ~R/Xt is assumed to be a constant over 
the entire flow field and is determined from certain quantities measured in the jet (~t is 
the translational relaxation time). However, it is well known that Z R depends on the tempera- 
ture of the gas, which varies significantly in the jet. 

In the present paper the rotational relaxation time in molecular nitrogen is found in 
supersonic free jets using electron beam diagnostics. The population densities of the rota- 
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